2016 Ratings as of December 1, 6:47 pm
by Average Computer Rating (ACR)

Division 3

NE East

  Great Lakes NE East NE West  New York  North Atlantic  South  South Atlantic    All

1Babson21-3 98.40.6590.600
2Univ. of New England20-4 97.30.6110.552
3MIT13-5 96.60.6030.577
4Mount Holyoke12-7 96.10.5590.529
5Wellesley10-8 96.00.5540.552
6Smith10-9 95.90.5730.607
7Springfield9-10 94.90.5300.552
8St. Joseph's-ME14-7 94.70.5530.526
9Endicott11-9 94.60.5020.476
10Maine-Farmington13-5 94.40.5260.439
11Husson8-7 94.30.5250.532
12Western New England10-10 93.80.4850.479
13Simmons11-8 93.70.4930.455
14Wheaton7-10 93.70.4830.507
15WPI6-11 93.60.4920.561
16Salve Regina9-10 93.30.4720.470
17Gordon8-11 93.30.4710.484
18Colby-Sawyer11-6 93.10.5040.465
19Lasell12-7 92.90.4790.414
20Thomas4-12 92.70.4480.523
21Johnson & Wales7-12 92.30.4620.497
22Clark5-13 92.00.4200.456
23Roger Williams4-15 92.00.3840.421
24Castleton6-12 91.90.4410.477
25Anna Maria7-12 91.40.4200.433
26Mount Ida10-8 91.10.4380.387
27Nichols2-17 90.20.3530.417
28New England College4-13 89.80.3600.392
29Rivier4-11 89.60.3880.431

1Team Records: Only divisional games are included in the records here.  The same holds true for the three ratings described below.

2Average Computer Rating: An equal weighting of two computer ratings, one based solely on goal differentials (with a 5-goal limit to greatly reduce any effects of "running up the score") and one based solely on wins and losses

3Ratings Percentage Index = 0.25*W/L pct. + 0.50*SOS + 0.25*opponents' SOS

4Strength of Schedule = Avg. of opponents' W/L pct. when not playing that team

  • Click the column headers to sort the table by that field (in descending order for ratings and alphabetically for teams).

  • In the case of opponent's record in RPI and SOS, games involving the target team have been removed.

  • Calculations are provided only for entertainment purposes.  The ACR has no bearing on tournament selection, while the NCAA's official SOS and RPI are produced and published in October and November.

  • Formulas are constant across schools, allowing comparisons to be valid.